metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bing-Yu Zhang, Tu-Gen Xu‡ and Duan-Jun Xu*

Department of Chemistry, Zhejiang University, People's Republic of China

Department of Chemistry Hangzhou Teachers College People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study T = 295 KMean σ (C–C) = 0.004 Å R factor = 0.040 wR factor = 0.096 Data-to-parameter ratio = 17.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

μ -Aqua-bis(μ -4-methylbenzoato- $\kappa^2 O:O'$)bis[(4-methylbenzoato- κO)(phenanthroline- $\kappa^2 N, N'$)cobalt(II)]

The title dinuclear Co^{II} complex, $[Co_2(C_8H_7O_2)_4(C_{12}H_8N_2)_2(H_2O)]$, has C_2 symmetry with the coordinated water O atom located on a twofold axis. Two Co^{II} ions are bridged by two methylbenzoate (MBZ) anions and one water molecule. Each Co^{II} ion displays a distorted octahedral coordination geometry. π - π Stacking occurs between roughly parallel MBZ and phenanthroline (phen) ligands and between parallel phen ligands.

Comment

Over the past few years, we have paid much attention to π - π stacking in metal complexes (Chen *et al.*, 2003; Li *et al.*, 2005) because π - π stacking between aromatic rings is an important non-covalent interaction and is correlated with the electron-transfer process in some biological systems (Deisenhofer & Michel, 1989). As part of an investigation on the nature of π - π stacking, we prepared the title methylbenzoate complex of Co^{II}, (I), and present here its crystal structure.

The molecular structure of (I) is shown in Fig. 1. The dinuclear Co^{II} complex has C_2 symmetry; the coordinated water O atom O5 is located on a twofold axis and bridges two Co^{II} ions. The Co^{II} ion assumes a distorted octahedral coordination geometry (Table 1) formed by a phenanthroline (phen) ligand, a coordinated water molecule and three 4-methylbenzoate (MBZ) anions. One MBZ coordinates in monodentate mode to each Co^{II} ion, and other two MBZ anions bridge Co^{II} ions, forming the dinuclear molecule. Atom Coⁱ [symmetry code: (i) 1 - x, y, $-z + \frac{3}{2}$] is displaced by

© 2006 International Union of Crystallography All rights reserved

Received 10 August 2006 Accepted 11 August 2006

Figure 1

The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms) [symmetry code: (i) 1 - x, y, $-z + \frac{3}{2}$].

Figure 2

 $\pi - \pi$ Stacking between parallel phen ligands [symmetry code: (ii) $\frac{1}{2} - x$, $\frac{1}{2} - y, 1 - z].$

1.485 (6) Å from the C11-carboxyl plane whereas the Co atom is coplanar with the C11-carboxyl plane [deviation 0.021 (8) Å]. This implies a poor overlap between the atomic orbitals of atoms Coⁱ and O4. However, the Coⁱ-O4 bond distance is almost identical with the Co-O3 bond distance

Figure 3 $\pi - \pi$ Stacking between roughly parallel phen and MBZ ligands [symmetry] code: (iii) 1 - x, 1 - y, 1 - z].

(Table 1), suggesting some element of electrostatic interaction in the Co–O bonding.

The face-to-face separation of 3.334 (5) Å between parallel, partially overlapped N1-phen and N1ⁱⁱ-phen [symmetry code: (ii) $\frac{1}{2} - x, \frac{1}{2} - y, 1 - z$] ligands clearly indicates the existence of π - π stacking (Fig. 2). In addition, a partially overlapped arrangement is observed between roughly parallel [dihedral angle 8.56 $(10)^{\circ}$] phen and MBZ ligands (Fig. 3). The distances of MBZ atoms to the N1ⁱⁱⁱ-phen mean plane are 3.416 (2) (C12), 3.259 (2) (C13), 3.301 (3) (C14) and 3.485 (3) Å (C15). These short separations suggest the existence of $\pi - \pi$ stacking between phen and MBZ ligands in the crystal structure of (I).

The coordinated water molecule is hydrogen bonded with the adjacent uncoordinated carboxyl atom O2 (Table 2).

Experimental

An acetonitrile/water (1:1) solution (20 ml) containing 4-methylbenzoic acid (1.36 g, 10 mmol), NaOH (0.40 g, 10 mmol), phen (1.98 g, 10 mmol) and CoCl₂·6H₂O (2.37 g, 1 mmol) was refluxed for 4 h and then filtered. Single crystals of (I) were obtained from the filtrate after 4 d.

Crystal data

 $[Co_2(C_8H_7O_2)_4(C_{12}H_8N_2)_2(H_2O)]$ Z = 4 $M_r = 1036.83$ $D_x = 1.430 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Monoclinic, C2/c a = 23.3452 (15) Å $\mu = 0.75 \text{ mm}^{-1}$ b = 15.5790 (13) ÅT = 295 (2) K c = 15.5765 (12) Å Prism, red $\beta = 121.746 (12)^{\circ}$ $0.32 \times 0.24 \times 0.20 \text{ mm}$ V = 4817.5 (9) Å³

Data collection

Rigaku R-AXIS RAPID	22736 measured reflections
diffractometer	5479 independent reflections
ω scans	4441 reflections with $I > 2\sigma(I)$
Absorption correction: multi-scan	$R_{\rm int} = 0.030$
ABSCOR (Higashi, 1995)	$\theta_{\rm max} = 27.4^{\circ}$
$T_{\min} = 0.778, \ T_{\max} = 0.862$	

metal-organic papers

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0492P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.040$	+ 2.0407P]
$wR(F^2) = 0.096$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.11	$(\Delta/\sigma)_{\rm max} = 0.001$
5479 reflections	$\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$
323 parameters	$\Delta \rho_{\rm min} = -0.47 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected bond lengths (Å).

Co-N1	2.1633 (16)	Co-O3	2.0732 (13)
Co-N2	2.1342 (16)	Co-O4 ⁱ	2.0838 (13)
Co-O1	2.0755 (14)	Co-O5	2.1708 (11)

Symmetry code: (i) $-x + 1, y, -z + \frac{3}{2}$.

Table 2 Hydrogen-bond geometry (Å, °).

$O5-H5A\cdots O2^{i}$ 0.85 1.77 2.570 (2) 156	$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
	$O5-H5A\cdots O2^{i}$	0.85	1.77	2.570 (2)	156

Symmetry code: (i) -x + 1, y, $-z + \frac{3}{2}$.

Methyl H atoms were placed in calculated positions with C-H = 0.96 Å and torsion angles were refined to fit the electron density,

 $U_{\rm iso}({\rm H}) = 1.5 U_{\rm eq}({\rm C})$. Aromatic H atoms were placed in calculated positions with C-H = 0.93 Å, and refined in riding mode with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$. The water H atom was located in a difference Fourier map and refined as riding in its as-found relative position, $U_{\rm iso}({\rm H}) = 1.5 U_{\rm eq}({\rm O})$.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/ MSC and Rigaku, 2002); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The project was supported by the National Natural Science Foundation of China (20443003).

References

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.

- Chen, Z., Xu, D.-J., Li, Z.-Y., Wu, J.-Y. & Chiang, M. Y. (2003). J. Coord. Chem. 56, 253–259.
- Deisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149-2170.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19-m21.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC and Rigaku (2002). CrystalStructure. Version 3.00. Rigaku/MSC, The Woodlands, TX 77381-5209, USA.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.